Topic Test 1 Mark Scheme

Angles - Higher

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1	Alternative method 1		
	180-72-72 or 36	M1	
	90 - their 36 or 54	M1dep	
	$(180-$ their 54$) \div 2$	M1dep	
	63	A1	
	Alternative method 2		
	$x+x+72+72+90=360$	M1	
	$2 x=360-72-72-90$	M1dep	
	$2 x=126$ or $(360-72-72-90) \div 2$	M1dep	
	63	A1	

2	angle $A C B=(180-48) \div 2$ or angle $A C B=66$ (base angles of isosceles triangle)	M1	
	angle $B C D=$ angle $A B C=66$ (alternate angles)	M1	
	angle $B C D=$ angle $C D B$ so triangle $B C D$ is isosceles	A1	Must give full reasons throughout

Q	Answer	Mark	Comments

3(a)	angle $B E F=3 x$	M1	
	$5 x+$ their $3 x+x=180$ or $9 x=180$	M1dep	
	20	A1	
3(b)	Alternative method 1		
	$\begin{aligned} & \text { angle } A B E(\text { or angle } F B C)=(180-5 \\ & \times \text { their } 20) \div 2 \text { or } 40 \end{aligned}$	M1	
	angle $A B E \neq$ angle $D E G$ (or $B E F$) and $N o$ or angle $C B F \neq$ angle $E F B$ and No	A1ft	ft their angle from part (a)
	Alternative method 2		
	Assumes lines are parallel and angle $A B E=3 \times$ their 20 or 60 and angle $C B F=$ their 20	M1	
	angle $A B E \neq$ angle CBF and No	A1ft	ft their angle from part (a)

4	$2 x+x+12+40+x=180$ or $180-2 x-(x+12)=40+x$ or $180-40-x=2 x+x+12$	M1	
	$4 x=180-12-40 \text { or } 4 x=128$ or $x=32$	M1dep	
	$180-40 \text { - their } 32$ or $2 \times \text { their } 32+\text { their } 32+12$	M1dep	
	108	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	Alternative method 1		
	$3 x+15=4 x$ (vertically opposite angles)	M1	
	$x=15$	A1	
	```angle ABE =8\times their 15 or 120 and angle BED = 4 x their 15 or 60```	M1	
	angle $A B E+$ angle $B E D=180$ and are allied (or interior) angles, so AC and DF are parallel	A1	Must give full reasons throughout
	Alternative method 2		
	$3 x+15=4 x$ (vertically opposite angles)	M1	
	$x=15$	A1	
	angle $F E M=3 \times$ their $15+15$ or 60 and angle $C B E=180-8 \times$ their 15 or 60	M1	
	angle $F E M=$ angle $C B E$ and are corresponding angles so AC and DF are parallel	A1	Must give full reasons throughout

